The Promoter of the Oocyte-Specific Gene, Oog1, Functions in Both Male and Female Meiotic Germ Cells in Transgenic Mice

نویسندگان

  • Miya Ishida
  • Eriko Okazaki
  • Satoshi Tsukamoto
  • Koji Kimura
  • Akira Aizawa
  • Seiji Kito
  • Hiroshi Imai
  • Naojiro Minami
چکیده

Oog1 is an oocyte-specific gene whose expression is turned on in mouse oocytes at embryonic day (E) 15.5, concomitant with the time when most of the female germ cells stop proliferating and enter meiotic prophase. Here, we characterize the Oog1 promoter, and show that transgenic GFP reporter expression driven by the 2.7 kb and 3.9 kb regions upstream of the Oog1 transcription start site recapitulates the intrinsic Oog1 expression pattern. In addition, the 3.9 kb upstream region exhibits stronger transcriptional activity than does the 2.7 kb region, suggesting that regulatory functions might be conserved in the additional 1.2 kb region found within the 3.9 kb promoter. Interestingly, the longer promoter (3.9 kb) also showed strong activity in male germ cells, from late pachytene spermatocytes to elongated spermatids. This is likely due to the aberrant demethylation of two CpG sites in the proximal promoter region. One was highly methylated in the tissues in which GFP expression was suppressed, and another was completely demethylated only in Oog1pro3.9 male and female germ cells. These results suggest that aberrant demethylation of the proximal promoter region induced ectopic expression in male germ cells under the control of 3.9 kb Oog1 promoter. This is the first report indicating that sex-dependent gene expression is altered according to the length and the methylation status of the promoter region. Additionally, our results show that individual CpG sites are differentially methylated and play different roles in regulating promoter activity and gene transcription.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P-130: Piwil2 Reprograms Human Fibroblasts to Germ Cell Lineage

Background The piwi family genes are highly conserved during evolution and play a crucial role in stem cell self-renewal, gametogenesis, and RNA interference in diverse organisms ranging from Arabidopsis to humans. Piwil2, also known as Hili, is one of the four human homologues of piwi. Piwil2 was found in germ cells of adult testis, suggesting that this gene functions in spermatogonial stem ce...

متن کامل

I-51: The Role of the Transcription FactorGCNF in Germ Cell Differentiation and Reproductionin Mice

The germ cell nuclear factor (GCNF) is a member of the nuclear receptor super family of transcription factors. GCNF expression during gastrulation and neurulation is critical for normal embryogenesis in mice. GCNF represses expression of the POU domain transcription factor Oct4 during mouse post-implantation development in vivo. Oct4 is thus down-regulated during female gonadal development, whe...

متن کامل

I-40: Male Genome Programming, Infertility and Cancer

Background: During male germ cells differentiation, genomewide re-organizations and highly specific programming of the male genome occur. These changes not only include the large-scale meiotic shuffling of genes, taking place in spermatocytes, but also a complete “re-packaging” of the male genome in post meiotic cells, leading to a highly compacted nucleo-protamine structure in the mature sperm...

متن کامل

بررسی بیان ژن Tsga10 در فرایند تمایز سلول‌های بنیادی جنینی موشی به سلول‌های ژرمینال در محیط آزمایشگاهی

Background: About 15% of couples have fertility problems and male factor in fertility accounts for half of the cases. In vitro generation of germ cells introduces a novel approach to male infertility and provides an effective system in gene tracking studies, however many aspects of this process have remained unclear. We aimed to promote mouse embryonic stem cells (mESCs) differentiation into ge...

متن کامل

I-13 Infertility with Impaired Zona Pellucida Adhesion of Spermatozoa from Mice LackingTauCstF-64

Background: Fertilization is a multistep process requiring spermatozoa with unique cellular structures and numerous germ cell-specific molecules that function in the various steps. In the highly coordinated process of male germ cell development, RNA splicing and polyadenylation help regulate gene expression to ensure formation of functional spermatozoa. Male germ cells express tauCstF-64 (Cstf2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013